Robohub.org
 

Exploring the DARPA SubTerranean Challenge


by
27 July 2020



share this:

The DARPA Subterranean (SubT) Challenge aims to develop innovative technologies that would augment operations underground. On July 20, Dr Timothy Chung, the DARPA SubTChallenge Program Manager, joined Silicon Valley Robotics to discuss the upcoming Cave Circuit and Subterranean Challenge Finals, and the opportunities that still exist for individual and team entries in both Virtual and Systems Challenges, as per the video below.

The SubT Challenge allows teams to demonstrate new approaches for robotic systems to rapidly map, navigate, and search complex underground environments, including human-made tunnel systems, urban underground, and natural cave networks.

The SubT Challenge is organized into two Competitions (Systems and Virtual), each with two tracks (DARPA-funded and self-funded).

SYSTEMS COMPETITION RESULTS

Teams in the Systems Competition completed four total runs, two 60-minute runs on each of two courses, Experimental and Safety Research. The courses varied in difficulty and included 20 artifacts each. Teams earned points by correctly identifying artifacts within a five-meter accuracy. The final score was a total of each team’s best score from each of the courses. In instances of a points tie, team rank was determined by (1) earliest time the last artifact was successfully reported, averaged across the team’s best runs on each course; (2) earliest time the first artifact was successfully reported, averaged across the team’s best runs on each course; and (3) lowest average time across all valid artifact reports, averaged across the team’s best runs on each course.

The Tunnel Circuit final scores were as follows

25 Explorer, DARPA-funded
11 CoSTAR (Collaborative SubTerranean Autonomous Resilient Robots), DARPA-funded
10 CTU-CRAS, self-funded winner of the $200,000 Tunnel Circuit prize
9 MARBLE (Multi-agent Autonomy with Radar-Based Localization for Exploration), DARPA-funded
7 CSIRO Data61, DARPA-funded
5 CERBERUS (CollaborativE walking & flying RoBots for autonomous ExploRation in Underground Settings), DARPA-funded
2 NCTU (National Chiao Tung University), self-funded
2 Robotika, self-funded
1 CRETISE (Collaborative Robot Exploration and Teaming In Subterranean Environments), DARPA-funded
1 PLUTO (Pennsylvania Laboratory for Underground Tunnel Operations), DARPA-funded
0 Coordinated Robotics, self-funded

The Urban Circuit final scores were as follows:

16 CoSTAR (Collaborative SubTerranean Autonomous Resilient Robots), DARPA-funded
11 Explorer, DARPA-funded
10 CTU-CRAS-NORLAB (Czech Technical University in Prague – Center for Robotics and Autonomous Systems – Northern Robotics Laboratory), self-funded winner of $500,000 first place prize
9 CSIRO Data61, DARPA-funded
7 CERBERUS (CollaborativE walking & flying RoBots for autonomous ExploRation in Underground Settings), DARPA-funded
4 Coordinated Robotics, self-funded winner of the $250,000 second place prize
4 MARBLE (Multi-agent Autonomy with Radar-Based Localization for Exploration), DARPA-funded
2 NCTU (National Chiao Tung University), self-funded
2 Robotika, self-funded
1 NUS SEDS, (National University of Singapore Students for Exploration and Development of Space), self-funded

VIRTUAL COMPETITION RESULTS

The Virtual competitors developed advanced software for their respective teams of virtual aerial and wheeled robots to explore tunnel environments, with the goal of finding various artifacts hidden throughout the virtual environment and reporting their locations and types to within a five-meter radius during each 60-minute simulation run. A correct report is worth one point and competitors win by accruing the most points across multiple, diverse simulated environments.

The Tunnel Circuit final scores were as follows:

50 Coordinated Robotics, self-funded
21 BARCS, DARPA-funded
14 SODIUM-24 Robotics, self-funded
9 Robotika, self-funded
7 COLLEMBOLA, DARPA-funded
1 Flying Fitches, self-funded
0 AAUNO, self-funded
0 CYNET.ai, self-funded

The Urban Circuit final scores were as follows:

150 BARCS (Bayesian Adaptive Robot Control System), DARPA-funded
115 Coordinated Robotics, self-funded winner of the $250,000 first place prize
21 Robotika, self-funded winner of the $150,000 second place prize
17 COLLEMBOLA (Communication Optimized, Low Latency Exploration, Map-Building and Object Localization Autonomy), DARPA-funded
7 Flying Fitches, self-funded winner of the $100,000 third place prize
7 SODIUM-24 Robotics, self-funded
2 CYNET.ai, self-funded
0 AAUNO, self-funded

2020 Cave Circuit and Finals

The Cave Circuit, the final of three Circuit events, is planned for later this year. Final Event, planned for summer of 2021, will put both Systems and Virtual teams to the test with courses that incorporate diverse elements from all three environments. Teams will compete for up to $2 million in the Systems Final Event and up to $1.5 million in the Virtual Final Event, with additional prizes.

Learn more about the opportunities to participate either virtual or systems Team: https://www.subtchallenge.com/

Dr. Timothy Chung joined DARPA’s Tactical Technology Office as a program manager in February 2016. He serves as the Program Manager for the OFFensive Swarm-Enabled Tactics Program and the DARPA Subterranean (SubT) Challenge.

Prior to joining DARPA, Dr. Chung served as an Assistant Professor at the Naval Postgraduate School and Director of the Advanced Robotic Systems Engineering Laboratory (ARSENL). His academic interests included modeling, analysis, and systems engineering of operational settings involving unmanned systems, combining collaborative autonomy development efforts with an extensive live-fly field experimentation program for swarm and counter-swarm unmanned system tactics and associated technologies.

Dr. Chung holds a Bachelor of Science in Mechanical and Aerospace Engineering from Cornell University. He also earned Master of Science and Doctor of Philosophy degrees in Mechanical Engineering from the California Institute of Technology.

Learn more about DARPA here: www.darpa.mil




Silicon Valley Robotics is an industry association supporting innovation and commercialization of robotics technologies.
Silicon Valley Robotics is an industry association supporting innovation and commercialization of robotics technologies.





Related posts :



Robot Talk Episode 103 – Keenan Wyrobek

  20 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Keenan Wyrobek from Zipline about drones for delivering life-saving medicine to remote locations.

Robot Talk Episode 102 – Isabella Fiorello

  13 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Isabella Fiorello from the University of Freiburg about bioinspired living materials for soft robotics.

Robot Talk Episode 101 – Christos Bergeles

  06 Dec 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Christos Bergeles from King's College London about micro-surgical robots to deliver therapies deep inside the body.

Robot Talk Episode 100 – Mini Rai

  29 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Mini Rai from Orbit Rise about orbital and planetary robots.

Robot Talk Episode 99 – Joe Wolfel

  22 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Joe Wolfel from Terradepth about autonomous submersible robots for collecting ocean data.

Robot Talk Episode 98 – Gabriella Pizzuto

  15 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Gabriella Pizzuto from the University of Liverpool about intelligent robotic manipulators for laboratory automation.

Online hands-on science communication training – sign up here!

  13 Nov 2024
Find out how to communicate about your work with experts from Robohub, AIhub, and IEEE Spectrum.

Robot Talk Episode 97 – Pratap Tokekar

  08 Nov 2024
In the latest episode of the Robot Talk podcast, Claire chatted to Pratap Tokekar from the University of Maryland about how teams of robots with different capabilities can work together.





Robohub is supported by:




Would you like to learn how to tell impactful stories about your robot or AI system?


scicomm
training the next generation of science communicators in robotics & AI


©2024 - Association for the Understanding of Artificial Intelligence


 












©2021 - ROBOTS Association